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SPACE STATION/SHUTTLE ORBITER
DYNAMICS DURING DOCKING

N. G. Fitz-Coy* and J. E. Cochran, Jr.*
Auburn University, AL 36849-3501

Mathematical models of a reference Space Station
configuration ("Power Tower'") and a Space Shuttle
Orbiter are developed and used to study the dynamic
behavior of the Space Station/Orbiter system just
prior to and subsequent to an impulsive docking of

the two spacecraft., The physical model of the Space
Station is a collection of rigid and flexible bodies.
The orbiter is modeled as a rigid body. An algorhthm
developed for use in digitally simulating the dynamics
of the system is described and results of its applica-
tion are presented.

INTRODUCTION

Placing a permanently manned space station in low earth orbit has
been identified as the next major goal of the United States civilian
space program.! This station will serve as a multifunctional base for
scientific and commercial advances in space. It will coatain
laboratories for research in such areas as communication, solar system
development, material processing, and astrophysics. The station will
also serve as a platform for satellite repair, thus expanding the life
span of these expensive space assets and reducing repair costs.

In-orbit
assuring

satellite equipment updating will also be possible, thus
that technological developments are quickly incorporated.

Additionally, the Space Station will serve as a base for the assembly of
other space structures which are too large to be first assembled on
earth and then placed into orbit by the Space Shuttle.

The
assigned
Station.
selected

National Aeronautics and Space Administration (NASA) has been
the task of defining a reference configuration for the Space
From a field of five candidate configurations, NASA has

the "Power Tower" arrangement (see Fig. 1) as the reference
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Fig. 1 "Power Tower" Space Station Configuration
(Without Payload).
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configuration.2 One of the reasons cited by NASA for selecting the
Power Tower counfiguration is its extraordinary expansion capabilities.
This configuration will consist of pressurized modules for habitation
and work areas, solar arrays for power acquisition, radiators for heat
dispersion, a docking port for the Space Shuttle, and a light-weight
truss constructed of carbon epoxy to which all the above are attached.
Due to the large size and the expected growth of the Space Statiom, it
is not reasonable to assume that the structure can be analyzed as a
rigid body.

The transfer of crew, supplies, and equipment to the Space Station
will require frequent docking of a Space Shuttle orbiter with the
station. It is therefore important that an understanding of the effects
of docking on the motion of the Space Station/Space Shuttle system be
developed. Estimates of these effects on the motion of the proposed
Space Station configuration are needed to adequately design its attitude
and translational control systems. Careful investigation of the docking
process should result in improvements in the reference configuration.

It is expected that the closing rate of an orbiter with the Space
Station will be small (on the order of 1.0 ft/sec). However, due to the
high degree of flexibility of the station, the docking of the orbiter
may still produce significant deflections of parts of the station. The
rare possibility of a Space Station control systems malfunction requires
that docking of the orbiter with an uncontrolled Space Station be
congidered. Furthermore, the dynamic response of an uncoantrolled Space
Station/Orbiter system during docking is of considerable importance from
the standpoint of control system design.

Early studies on docking involved investigators such as Wiliiams,3
Grubin,“ Chiarappa,> Brayton,® and Cochran and Henderson.’ With the
exception of the work done by Cochran and Henderson, these early studies
were not concerned with the effects of flexibility on docking. 1In
considering the effects of flexibility, Cochran and Henderson analyzed a
system consisting of a rigid target vehicle to which two point masses
are connected by massless, flexible, extensible rods. A rigid
rendezvous vehicle was allowed to dock with the target vehicle and the
effects of the flexibility of the appendages were then analyzed.

Recently, the problem of spacecraft flexibility has received
renewed attention. In particular, Levinson and Kane,8:9:10 nhave
congsidered the planar docking dynamics of bodies consisting of flexible
and rigid components. Some of the work done by Levinson and Kane
involves the docking dynamics of (1) a spacecraft modeled as a
cantilever beam and a rigid rendezvous vehicle, and (2) a spacecraft
modeled as a free-free beam and a rigid rendezvous vehicle.3>10 In
these analyses, the deformation of the structure was represented by
unconstrained mode shapes which were obtained using a finite element
approach. It was shown by Hablanil! that unconstrained mode shapes
portray the deformation of the structure more accurately than
constrained mode shapes. Here, "constrained mode shapes" refers to mode
shapes obtained when one end of the structure is constrained and the
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structure is then caused to vibrate at its natural frequencies. On the
other hand, unconstrained mode shapes are obtained when the structure is
completely free. Many other investigators such as Likins,!2 Hughes and
Skelton!3 and Ho and Herberl“ have developed simulation routines and
modal truncation methods to analyze the effects of flexibility on large
spacecraft,

The docking problem considered in this paper differs from the work
done by Levinson and Kane. Herein, the motion is three-dimensional
rather than planar and a more complex model of one of the bodies is
developed and utilized. Uncounstrained mode shapes are used to define
the motion of the structure. These mode shapes were obtained from the
MacNeal-Schwendler (MSC) Nastranl!® finite-element modal analysis
routine. They were incorporated in a computer program developed to
simulate the dynamics of the Space Station before and after docking. A
particular docking mechanism is not considered; instead, the docking is
modeled as an impulsive interaction between the Space Station and an
Orbiter.

In the following sectiomns the governing equations of the Space
Station/Orbiter system are derived and simulation results are presented.
The motions of the Space Station and Space Station plus Orbiter system
are considered first. Next, the equations governing the impulsive
interaction between the Station and an Orbiter are derived. Use of the
complete set of equations to simulate the motion of the Space Station
before and after docking with an Orbiter occurs is then discussed.
Representative simulation results are presented and interpreted.
Finally, conclusions are stated along with suggestions for additional
research,

EQUATIONS OF MOTION

The station is modeled as a hybrid of flexible and rigid components
in which the base section (lower section containing the modules and the
docking port) is modeled as a system of rigid bodies and the remaining
structure (upper and lower keels, booms, and solar arrays) is modeled as
a collection of flexible bodies. The center of mass of the undeformed
station is assumed to move in a circular orbit about the earth. Because
impulsive docking is assumed, the presence in the system of the Orbiter
after docking is modeled by adding a rigid body to the base section of
the original Station model.

As shown in Fig. 2, the inertial position vector gp of a generic

mass element, P, of mass, dm, can be written as

s (1)

where r includes vectors for both the deformed and undeformed structure.
If the structure is assumed to be flexible, the vector r can be
expressed as




r=r +u. (2)

As shown in Fig. 3, I, is the vector locating the point P in the

SXgYgZg system when the structure is undeformed; and u defines the

deformation of the structure in the stYszs system. The SXSYSZs

system is tied to the station in such a way that S coincides with the
station's mass center when the structure is undeformed. The nominal
orientation of this coordinate system is such that the Xg-axis is
tangent to the orbit, the Yg-axis is parallel to the boom and points
towards starboard, and the Zg-axis is parallel to the keel and is
directed radially towards the center of the earth. When docking occurs,
the SXsYsZs system rotates with the Space Station. If the deformation

is defined in terms of unconstrained mode shape vectors, - then u can

be written as

N
g= 1 49 (3)
L e
where & is the mode shape of the ktP mode, and 9 is the generalized
coordinate associated with the ktP mode. Substitution of Eq. (2) iato
Eq. (1) results in

= R. + r + u, (&)
The translational equations of motion are obtained from

jgdm-jadm-fgpdm, (5)

M M P M
8 S S

where f is the force per unit mass acting on the differential element of
mass, dm, and Mg is the total station mass.

From Eq. (4), §p can be expressed as

R = E +wx (r+u) + wxlw x (r +u)] + 2w x
p =-s =8 '=u - -8 -8 -u - =5

(6)

o
+
Ic8

where w. is the angular velocity of the SX Y Z_  system and a "°" over

a vector. denotes time differentiation of that vector's Xg-, Yg- and
Zg-components only. Substituting Eqs. (3) and (6) into Eq. (5), the
resulting equation can be evaluated to obtain the following matrix form
of the tramslational equations of motion:
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Fig. 2. Inertial Position Vector of Differential
Elenent, dm.

deformation '
(p'4P)

Body before
defornation
(P'=p) -

Fig.. 3. Description of Space Station's
Deformation in the SX‘Y‘Z’ System.
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where m_is the modal momentum coefficient!!l defined as

o = g 4 dm , (8)

and Eex is theé total external force. The direction cosine matrix, QT,

is also introduced to accommodate the different coordinate systems used
in writing Eq. (6). Here, CT transforms vector components in SXKgYgZg4
»

system to corresponding components in the EXYZ system. Thus, Eq. (7)
represents the translational equations of motion written in the EXYZ
system.

The rotational equations of motion about the station's mass center
are obtained from

[ 7dm = [ x a_dnm, 9)

where T is the torque per unit mass about S due to the force per unit
mass f. The left side of Eq. (12) is the total external torque about
the station's mass center; that is,

[ T1dm=7T%%, (10)

By substituting Eqs. (2), (6), and (10) into Eq. (9), and evaluating the
integrals which appear in the resulting equation, one may rewrite Eq.
(9) in the matrix form,

N - ~
™" = killquksss + v, *+ ule,
. N had
* Ut t Rt et L Byl ] (n

i=1
where I is the inertia dyadic of the station. The flexibility

coefficient, !l B» of Eq. (11) is defined as
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B 5[z ¢dn (12)

and

ﬁkj £ é ;ij dm .

Again, the direction cosine matrix, C, has been used to transform the
=

components of vectors to a common reference coordinate system (i.e., the
SXg¥gZg system in this case).

Equations (7) and (11) constitute six of the six plus N (6+N)

equations needed to define the motion. The remaining N equations are
obtained from the equations

[ «fdm=[ 9 «adm , j=1,2,...,N, (13)
i M3 TP
s s
where gp is given by Eq. (6). Generalized forces, Qj, j=1,2,3,...,N,

may be defined by

Q. = [ 9. *fdm=[ ¢ « £%m+ [ 4. o £%n , (14)
it B b=

where f€X and fl0 are the "external" and "internal" parts of f. Thus,

Eq. (13) can be rewritten as

Q; = I{ (8 « B+ 5+ o x (4w + 95 * uy x (o x(g rw)}
]
+ 2§j © ex ; + Qj . ;]dm . (15)

The integrals on the right-~hand side of Eq. (15) may be evaluated to
obtain the following matrix form for Eq. (15):

N
o T = T T . T
Qj E‘j_g_gs + (Ek + _]Zl 'gk_] Qj)“’s + S’sgj‘_"s
s I fed + ) aa
+ WP wq +2 ) wB.q + m. q , (16)
k=] ~STIkTS Tk ka1 87 Jk k=1 JEK
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where

B, A}{ 5L, 9 (17a)
S
bt
Bk 1{9591( dm , (17b)
8
T
LT 2 4 jﬁjk dm . (17¢)
s

Since the elastic deformations are assumed small (i.e., less than
102 of the structural length), then all terms second-order and
higher-order in q, are dropped from Eqgs. (7), (11), and (16). Similar

action is taken regarding the angular velocity, > of the station.

Also, all products of Qe and w, are neglected.

By dropping the appropriate terms from Egqs. (7), (11), and (16),

one may rewrite these equations as follows:

N

ex o T ~ P9 e

Fo=MR +¢ kzll- m Q@ * maq,l, (18)
N - (1] Ll

ex .

o= kzllqukggs + 1o+ pads (19)
T . Te .5 =

QJ = EJQBS + Ekgs +k,§l mjqu . (20)

Explicit expressions for the forces and torques expressed in Egs.
(18), (19), and (20) are now developed.

Forces and Torques

A satellite in a low earth orbit (nominally 300 km altitude) is
affected by several forces. For example, the important external forces
and torques may include those due to gravity, the atmosphere, thrusters,
other control devices, and solar radiation. In this paper, gravita-
tional forces and gravity-gradient torques are the only external forces
and torques considered.

The gravitational force acting on a differential element of mass,
dm, is expressed as
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(21)

where u is the gravitational constant of the earth and gp is the vector

shown in Fig. 4.

By recalling Eq. (1), one can approximate R;3 by (Ref. 17)

R;3 z% [1 —%.z L e Bs + H,O.T.] . (22)
s S

By substituting Eqs. (1) and (22) iato Eq. (21), and then integrating,
one may show that

+ 320 c't (1)DR -3 " R CTI + H.O0.T (23)
7’5 & E(DR RO =¥ = I

Next, the contribution by terms containing R;s may be neglected and

the external force expressed (in the EXYZ system) as

ex uo T N
F = —R1' [Msgs +§ Z gqu] . (24)
s k=1

It was noted by Kaplanl® that gravity-gradient torques provide
excellent directional stability for spacecraft in eccentric orbits.
Thus, in comnsidering a circular orbit (eccentricity equals zero), it is
reasonable to assume that gravity-gradient torques may be used to
provide stabilization for the Space Station. The gravity-gradient
torque can be obtained by crossing the vector r with the external forces
defined in Eq. (21) (Ref. 17, pp. 112-119) and is presented here as
ex ~ N

u
IV wg (R, L omea + 7 RIR, (25)

Equation (25) represents a set of differential equations, written
in the SXgY¥gZg system, that governs the rotational motion of the Space
Station,




Fig. 4 Gravitational Force Acting on dm.
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The generalized force, Qj» associated with the jth mode of
vibration can be decomposed into two parts. One part contains the
contribution due to internal forces, and the other contains the
contribution due to external forces. Each coatribution can be
formulated as shown in the following set of equations.

in ex

. = Q. + Q. (26a)
QJ QJ QJ

in % o N ° g
Q. = m. q, + 2 €. q.* k., q (26b)

SO LIRS L SO L

. u N
ex o . T.T
Q - 3 [RG mo Yyt kzl mjqu] (26¢)

In Eqs. (26), cjx and kjk represent the jkth element of the structural
damping and stilfness matrices. The quantity Yj in Eq. (26) is defined

as follows:

A T
Y; = }{ 9 (¢, )dm. (27)
8

The complete linearized equations of motion are obtained by
combining Eqs. (18), (19), and (20) with Eqs. (24), (25), and (26).
From these expressions, one may show that the equations that govern the

translation motion may be expressed as

u N
" w3 M ¢ ¢ mayl

k=1
e T N - P Ll
= MR+ kzlh mqu +mal, (28)
whereas, the rotational motion is governed by
H N
o (7™ 3 =~
&3 lgsskglequ f Rz BRI,
(29)

N - . . .
B kgllquksgs * lgs * Equ]

The generalized coordinates are governed by the following

expression:




T T LANUROL TPt Y
—z3l)lm q +RCm +vy.] +Jm. q +Jec.q +) k. q
Rs k=1 Jk 7k s A J k=1 jk 7k k=1 Jk 'k k=1 Jk 7k
N
T" T' .o
= m. . + . .
DR, * uy u kgl LI (30)

The 6+N linearized differential equations expressed in Eqs. (28),
(29), and (30) are sufficient to simulate the motion of the station
before and after docking. To simulate motion after docking, Mg and I

must be adjusted to account for the presence of the orbiter that is now
attached to the station.

DOCKING

As stated previously, a particular docking mechanism is not
considered in this paper. Instead, the docking of the orbiter with the
Space Station is assumed to produce impulsive changes in the kinematical
variables. In what follows, the docking of the orbiter with the Space
Station is modeled as rigid body docking with a cantilever beam/rigid
body assembly. A similar problem was addressed by Levinson and Kane in
Ref. 10 where they analyzed the planar case of a rigid body docking with
a free beam.

The system to be analyzed (see Fig. 5) counsists of a single rigid
body (orbiter) and a cantilever beam/rigid body assembly (Station). The
system of Fig. 5 can be subdivided into the systems of Fig. 6.

The Space Station (bodies A and B) is assumed to have linear and
angular velocities, ug and (1 before docking occurs. After docking,
these velocities become Ve and Qs, respectively. The orbiter's linear

velocity will change from 4, to v due to docking. Also, the angular

velocity of the orbiter will change from @, to Q.. As stated above, the

| orbiter and the Space Station are assumed to couple rigidly during
docking, and then to rotate together.

Equations for Docking

The law of conservation of linear momentum for body A can be
expressed as

t
[ Cy, = u)dm = [ 2([£ am)ae , (31)
m

A |

where m, is the mass of body A. The quantities u, and v_ are the

"before" and "after" velocities of a differential element of mass, dm,
and are defined here as
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Fig. 5. Schematic of Orbiter/Space Station Assembly.
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Fig. 6(a). Free-Body Diagram for Flexible Section of
the Space Station (Body A).
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Fig. 6(b). Free-Body Diagram for Rigid Section of
the Space Station (Body B).
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Fig. 6(c). Free-Body Diagram for the Orbiter (Body 0).
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v, = Es + E)sx gA + 2)3 X E* + kzl 'quk (323)
and
N
o4
*
v, T Y, + gs X BA + gs X r* + kzl gqu (32b)

where a; and a; are the "before'" and "after" time rate of change of the

generalized coordinates. Equation (32) may be substituted into Eq.
(31), and the result integrated to obtain the following form of the
statement of the law of conservation of linear momentum for body A:

N

o% 0=
m, (¢, ~u) +m (@ -w) xR +1.)+ kzl P (q - q)
ty
=~ [ g% de . (33)
t

The quantity gk shown in Eq. (33) represents the momentum flexibility

coefficient!! for body A and is defined as
4
P 2[4 .
TA

The law of comservation of linear momentum may also be applied to
bodies B and 0. For body B, one has

t

me(y, - u) = / 2 (F + f*)dt, (34)
s t,
and for body O,
t 2 A
m (v, - u) =~ | °F dt (35)
t
1

Equations (33), (34), and (35) may be combined to give

N
m (v, - u) +m,(2-u) x (R, +1r,)+ kzlgsz - q)
* (v = ug) +m (v, = ug) = 0 (36)




The dot product of gj with Eqs. (31) and (32) combined provides an

. o4 L
expression for Qe = Q-

i [(gg = ug) » & + (8- w) x (R, + *) « 45

N t
+ 1 8 4 - q) dm= - f 2$5 . £* de (37)
k=1 cl

The right-hand side of Eq. (37) is zero because at the point at which f*
is applied, the deformation is zero. Thus, Eq. (37) can be rewritten 1in
matrix form as

T T S T
2ilyg -8 - By BB - w) +6:(8 - )
N o4 0=
- -kzl m, (ay - ) (38)
where
G. = [ t* ¢. 39
G n{z 1’3 (39a)
A
and
- T
mjk i Jﬁjk dm . (39b)
A

To account for the N modes of vibration, Eq. (38) can be rewritten in
the following form:

T, T °
B'(y, - u) - BB (8- w) + 6" (2~ w) =3, (40)

The Nx3 matrices, gT and QT, are defined as:

s ——y ~
T T
Bl €
T T T T
P* = By | » ¢ = G, . (41a)
T T
PN SN
— - -
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o4 0=
™1 M2 R ) 4 - 9
° o4 0=
M=- 1 H 9 = "9, (41b)
* o4 ; 0w
™1 ... TN Ay ~ 9y

The law of conservation of angular momentum yields three
additional expressions. These expressions are obtained from the
following equations by applying the law of conservation of angular
momentum to bodies A and B combined (Space Station), and to body O
(Orbiter). Equation (42) is obtained when the law of comservation is
applied to the Space Station.

N
(Is + Ix) . (“28 = 98) + [mA(gA + SCA) + kzl gqu] X (!8 ‘Es)
N . N . t2
+Rox ] Ba+ [ Ga = [ [T +R xFlde (42)
k=] k=1 tl
A similar expression is obtained for body O (Orbiter).

€2

Lo+ (8 w) = - [T+ Ry xFl de (43)
1

If one combines Eqs. (35), (42) and (43), then the statement of
conservation of angular momentum can be expressed in the following
matrix form:

(I, + I+ 1) 8, + [m (R, + 1) +Bally, -u)+[RE+Glg

-~

+m(Ry - Ry, = u) = (I + I u * I, u (44)

Equations (36), (40), and (44) represent six plus N (6+N) equations

in nine plus N (9+N) unknowns. The relationship between v, and v,

accounts for the remaining three equations. This relationship is
written here as

v, =y, - Ry - R) g, (45)

It can be shown that Eqs. (36), (40), (44), and (45), when combined,
yield the following equations that govern the impulsive interaction
between the Station and the Orbiter.




-B'R) -m, (R, + ;) -m (R -R)IgQ

-1pT
* [(my +m +m)E+ PMIR] v

= (my +m) E+ 2Ry, +my
+ [pM~! (gT - BTE. ) - m (ﬁ - )] w (46)
2= x =A A '-A =CA =8

(I, + I+ I, ~m (R - BQ)(I_(D - _RQ)

+ (R2+ 8 M1 (g - 2RI g,

+

[m, (R, + Zg)) * 23 +m) (Ry = Rp) + (R2+ @M7IRT] v,

~ ~ ~J ~
-1pT -

+

L, + 1%, + R2+ @ 0l T -ER)I w + I g D)

(vo -u) +¥l g - PRI - u) (48)

One may obtain from Eqs. (46), (47) and (48) the changes in the
state variables which occur during docking. Consideration is now given
to the simulation of the motion of the Space Station before and after
docking occurs.

SOLUTION TECHNIQUES

Computer programs were developed and used in conjunction with the
Harris H-800 minicomputer at Auburn University to simulate the motion of
the Space Station. The computer programs comnsist of three steps, the
first of which simulates the motion of the station prior to docking.

The second step encompasses the determination of the changes in the
kinematical variables due to the docking of an Orbiter with the Space
Station. Finally, the third step simulates the motion of the Space
Station/Orbiter system after docking has occurred.

In the following sections, the details of the numerical simulation
of the Space Station before and after docking are discussed.
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Mode Shages

To describe the deformations of the flexible structure,
unconstrained mode shape vectors (eigenvectors) were obtained from a MSC
Finite Element program available at Auburn University on the IBM 3033
computer. These mode shape vectors were obtained using the Givens
(tridiagonal) method, and were normalized with respect to the mass of
the Station.

The truss structure of Fig. 1 was modeled as a structure consisting
of "equivalent" beam elements (see Fig. 7). The equivalence was
obtained by modeling a section of the truss structure and subjecting it
to known forces and torques. With the deformations (both linear and
angular) obtained from this model, the stiffness of an equivalent beam
was computed using standard beam theory equations.

Using the equivalent beam model for the station, two sets of
eigenvectors were obtained. One set contains the eigenvectors for the
station without the Orbiter and the other set contains the eigenvectors
for the Space Station/Orbiter system. To obtain the eigenvectors for
the Space Station/Orbiter system, the Orbiter was modeled as a rigid
body attached to the rigid base of the Station.

Numerical Simulation

Equations (28), (29), and (30) represent a set of six plus N (6+N)
coupled, second-order differential equations. In the simulation
process, these equations are numerically integrated using a fourth-order
Runge-Kutta scheme. 1In order to efficiently utilize the Runge-Kutta
scheme, Eqs. (28), (29), and (30) were manipulated to give the following
expressions. The expression associated with the generalized coordinates
is shown here as

[MIg + [Cl§ + [K] g = F (49)

where

- - 1
(Ml = -5 x'x
S

(50a)

S|
[[%
%
+
=
_:]
it
[}
—
i
=
+
z|~
1] z
IIE

[c] = - 2z{w Iy (50b)
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Fig. 7 NASTRAN Equivalent Beam Model.
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Moxxarel I REoex ¢
8 8 -]
and
P om0 1 Ta . Ty 1=1(s Yo =2
F=-mI-lFxxd+y! I3 55 GRIR | (51d)
S 8 s

The angular acceleration of the Station is obtained from
u u
- 0~ 1 o
o =1 l{3?85 B,IER, * % 73 M
1 ~
R WS TURTE 2

and the linear acceleration of the ceanter of mass of the station is
obtained from

. u u o
o 1 o T 1 T o 1 T
L Al vl I U B vl R ¢ (53)
8 [ ) S 8
In Eqs. (51), (52), and (53),
x= (@ o, m ... ol (54a)
il = [El 22 E3 o HN] » (Sab)
p— — r— -
1 12 cc M 1
o= (myy my, ceomy |, g=]q, , (54¢c,d)
By Byz oo Ty qNJ
i [ T ] K3
" 5] B
T T T T
r = Y2 , 5 = EZ , T} = EZ (59e,f,g)
Y, T T
N
- [ |
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During the simulatiom, Eq. (49) is solved for the highest

derivative, g, and then integrated to obtain the time rate of change of
. . b . . -
the generalized coordinates, g. During each time increment, the

calculated values of q are substituted into Eq. (51), which is
integrated numerically to obtain the angular velocity and angular
displacements. A similar process is applied to Eq. (52) to obtain the
linear velocity components and linear displacements of the station's
mass ceater. :

The process described above is continued until docking occurs. At
the instant of "docking," the changes in kinematical variables are
obtained by solving Eqs. (46) and (47) simultaneously for the angular
velocity, gs, and the linear velocity, Vo of the station's mass center.

These results are then substituted into Eq. (48) to obtain the time rate
of change of the generalized coordinates.

Motion after docking is simulated exactly as that before docking,
with the exception of accounting for the presence of the Orbiter.

Before any simulation may be accomplished, the initial conditions
on w_, Bs’ 9 > ak and the Orbiter's linear and angular velocity must be

s
given or calculated. This process is considered in the next section.

Initial Conditions

The Space Station's center of mass is assumed to be initially in a
500 km circular orbit inclined at 28.5° (see Fig. 8). Initially, the
Station rotates at the mean motion for that orbit. For simplicity, the
angle of the ascending node, §}, was assumed to be zero, and simulation
began when the Station occupies the ascending node position. The
initial conditions of the generalized coordinate were obtained by
assuming a state of dynamic equilibrium for the Space Station. Using
these assumptions, the initial conditions on the Space Station state
variables were calculated and are shown here in Table 1.

The results discussed in the following sections were obtained using
these initial coanditions.

RESULTS AND DISCUSSION

An algorithm was developed to numerically integrate the equations
of motion of the Space Station and the Space Station/Orbiter system. In
this algorithm, a fourth—order Runge-Kutta integration scheme with an
integration time increment of 0.0l seconds was used. The motion was
simulated over a real time interval of 200 seconds during which docking
occurred. A separate algorithm was developed to compute changes that
occur in the kinematical variables of the Station due to impulsive
docking with the Orbiter. In both algorithms, the structural
deformations were calculated using the first eight vibrational modes. A
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Fig. 8 Orbit Description.




TABLE 1

INITIAL CONDITIONS

Parameter
R, (EXYZ system)
x-component
" y~component
z-component
gs (EXYZ system)
x-component
y~component

z-component

w, (SX Y Z_ systen)

8 8 8

x-component
y-component
z-component

qj» j=1,2,...,N

qj, j=1,2,...,N

Initial Value

6878 km
0 km

0 km

0
7.6127 km/s

0 km/s

0 rad/s

0 rad/s
1.1068x1073 rad/s
-0.19623, -0.41874
0.25247, -0.52811
0.23838, -0.13866
0.10141, 0.22680

0, 0, 0,..., 0
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third algorithm was developed to compute the mass properties of the
Space Station, which are shown in Table 2.

To investigate the effects of docking on motion of the Space
Station, three approach orientations of the Orbiter were considered.
These are as follows: (1) An approach along the X-axis in the positive
X-direction, (2) an approach at 45° to the X-axis in the XY-plane (see
Fig. 9), and (3) an approach at 45° to the X-axis in the XZ-plane (see
Fig. 9). For each approach orientation, the closing rate of the Orbiter
was varied between 0.5 ft/sec and 1.5 ft/sec.

A comparison was made of the changes that occur in the magnitude of
the Station's angular velocity when the Station is modeled as a hybrid
of flexible and rigid bodies to that of the Station when modeled as a
single rigid body. Figures 10 through 14 show this comparison for
various approach orientations. It can be observed from these figures
that flexibility does affect the angular motion of the Station. The
primary effect is due to the time required for the flexible bodies to
respond to the impact of the Orbiter with the rigid body to which they
are attached. This can be called an "inertia" contribution. Although
the cases of Y-axis or Z-axis approach are probably not realistic, it is
observed that with either approach the "inertia" contribution of the
flexible bodies does not produce significant changes in the angular
velocity of the Station's mass center. Thus, for these approaches, the
rigid body model yields the larger changes in angular velocity.

However, for an approach along the X-axis it is observed that the
inertia countribution of the flexible bodies does significantly affect
the angular velocity of the Station. Thus, with an X-axis approach, the
hybrid model predicts a greater change in angular velocity.

Figure 15 shows the changes in the magnitude of the angular
velocity of the hybrid model for approaches (1) along the X-axis, (2) at
45° to the X-axis in the XY-plane, and (3) at 45° to the X-axis in the
XZ-plane. 1t can be observed that the XZ-plane approach produces the
smallest changes in the Station's angular velocity.

The simulation results of Figs. 16 through 18 were obtained by
numerically integrating the equations of motion of the Station and the
Station/Orbiter system. In Eq. (50b), a proportional damping
coefficient of 0.01 was assumed. Simulation began when the Station
occupied the ascending node position (see Fig. 8); fifty seconds later,
docking of the Orbiter occurs. The motion of the Station/Orbiter system
after docking is simulated for an additional 150 seconds. The results
represented in these figures are the total displacements of the tip of
the upper keel (point A) and the center of mass of an upper outboard
panel (point B). The deformations of points A and B after docking are
observed to be in-phase when the Orbiter approaches along either X-axis
or at 45° to the X-axis in the XZ-plane. However, when the the
Orbiter's approach is at 45° to the X-axis in the XY-plane, the motion
after docking is no longer in-phase. This is probably due to the
combined transverse and longitudinal motion of the panels when the
approach is in the XY-plane.




TABLE 2

STATION MASS PROPERTIES

WEIGHT 2.6612x10° lbs

MOMENTS AND PRODUCTS

OF INERTIA
IXX 2.0318x10°
1YY 1.8704x10°
122 2.5434x108
IXY 2 0
IXZ 7.4644x108
1Yz 2 0

1b-ft2
lb-ft2
1b-ft2
lb-ft2
lb-ft2

1b-ft2
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Fig. 9 Approach Orientations for the
XY- and 'XZ-Planes.
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Figures 16 through 18 also indicate that the maximum deformation of
point B is substantially greater than the deformation of point A
(approximately twice as large). Figures 19 and 20 show the maximum
deformations of points A and B for the various approach orientations and
closing rates. An approach along the X-axis produces the greatest
maximum deformations, whereas an approach in the XY~plane produces the
smallest maximum deformation.

CONCLUSIONS AND RECOMMENDATIONS

The results obtained reveal that flexibility is a significant
factor in the dynamics of the docking of an Orbiter with the proposed
Space Station. 1In particular, the changes in the angular velocity of
the more rigid part of the Station are greatly affected by flexibility.

Only the first eight modes of vibration were modeled in this
analysis. Additional modes of vibrations should be considered in
further studies. However, increasing the number of vibrational modes
will result in increased computational requirements.

More general results could have been obtained if the Station's
payload was considered. In addition, the motion of the crew may have a
significant effect on the docking dynamics of the Space Station/Orbiter
system.

Finally, a suitable control system must be designed to stabilize
the rotational motion of the Station/Orbiter system. Realistically,
this can only be done after, or during, a dynamic analysis of a Station
model that incorporates payload and crew motion.
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